Уравнение бегущей волны. Образование стоячих волн

  • 14.08.2023

ВОЛНЫ НА ПОВЕРХНОСТИ ЖИДКОСТИ - волновые движения жидкости, существование к-рых связано с изменением формы её границы. Наиб. важный пример - волны на свободной поверхности водоёма (океана, моря, озера и др.), формирующиеся благодаря действию сил тяжести и поверхностного натяжения. Если к--л. внеш. воздействие (брошенный камень, движение судна, порыв ветра и т. п.) нарушает равновесие жидкости, то указанные силы, стремясь восстановить равновесие, создают движения, передаваемые от одних частиц жидкости к другим, порождая волны. При этом волновые движения охватывают, строго говоря, всю толщу воды, но если глубина водоёма велика по сравнению с длиной волны, то эти движения сосредоточены гл. обр. в приповерхностном слое, практически не достигая дна (короткие волны, или волны на глубокой воде). Простейший вид таких волн - плоская синусоидальная волна, в к-рой поверхность жидкости синусоидально "гофрирована" в одном направлении, а все возмущения физ. величин, напр. вертик. смещения частиц , имеют вид, где х - горизонтальная, z - вертикальная координаты, - угл. частота, k - волновое число, А - амплитуда колебаний частиц, зависящая от глубины z . Решение ур-ний гидродинамики несжимаемой жидкости вместе с граничными условиями (пост. давление на поверхности и отсутствие возмущений на большой глубине) показывает, что , где A 0 - амплитуда смещения поверхности. При этом каждая частица жидкости движется по окружности, радиус к-рой равен A (z) (рис., а). Т.о., колебания затухают в глубь жидкости по экспоненте, и тем быстрее, чем короче волна (больше k ). Величины связаны дисперсионным уравнением

где - плотность жидкости, g - ускорение свободного падения, - коэф. поверхностного натяжения. Из этой ф-лы определяются фазовая скорость , с к-рой движется точка с фиксир. фазой (напр., вершина волны), и групповая скорость - скорость движения энергии. Обе эти скорости в зависимости от k (или длины волны ) имеют минимум; так, мин. значение фазовой скорости волн на чистой (лишённой загрязняющих плёнок, влияющих на поверхностное натяжение) воде достигается при 1,7 см и равно 23 см /c . Волны гораздо меньшей длины наз. капиллярными, а более длинные - гравитационными, т. к. на их распространение преимуществ. влияние оказывают соответственно силы поверхностного натяжения и тяжести. Для чисто гравитац. волн . В смешанном случае говорят о гравитац--капиллярных волнах.

Траектории движения частиц воды в синусоидальной волне: а - на глубокой, б - на мелкой воде.

В общем случае на характеристики волн влияет полная глубина жидкости H . Если вертик. смещения жидкости у дна равны нулю (жёсткое дно), то в плоской синусоидальной волне амплитуда колебаний меняется по закону: , а дисперс. ур-ние волн в водоёме конечной глубины (без учёта вращения Земли) имеет вид

Для коротких волн это ур-ние совпадает с (1). Для длинных волн, или волн на мелкой воде , если можно пренебречь эффектами капиллярности (для длинных волн они обычно существенны только в случае тонких плёнок жидкости), оно приобретает вид В такой волне фазовая и групповая скорости равны одной и той же величине не зависящей от частоты. Это значение скорости наибольшее для гравитац. волн в данном водоёме; в самом глубоком месте океана (H =11 км) оно 330 м/с. Движение частиц в длинной волне происходит по эллипсам, сильно вытянутым в горизонтальном направлении, причём амплитуда горизонтальных движений частиц почти одинакова по всей глубине (рис., б) .

Перечисленными свойствами обладают только волны достаточно малой амплитуды (много меньшей как длины волны, так и глубины водоёма). Интенсивные нелинейные волны имеют существенно несинусоидальную форму, зависящую от амплитуды. Характер нелинейного процесса зависит от соотношения между длиной волны и глубиной водоёма. Короткие гравитац. волны на глубокой воде приобретают заострённые вершины, к-рые при определ. критич. значении их высоты обрушиваются с образованием капиллярной "ряби" или пенных "барашков". Волны умеренной амплитуды могут иметь стационарную форму, не изменяющуюся при распространении. Согласно теории Герстнера, в нелинейной стационарной волне частицы по-прежнему движутся по окружности, поверхность же имеет форму трохоиды, к-рая при малой амплитуде совпадает с синусоидой, а при нек-рой макс. критич. амплитуде, равной , превращается в циклоиду, имеющую на вершинах "острия". Более близкие к данным наблюдений результаты даёт теория Стокса, согласно к-рой частицы в стационарной нелинейной волне движутся по незамкнутым траекториям, т. е. "дрейфуют" в направлении распространения волны, причём при критич. значении амплитуды (несколько меньшем ) на вершине волны появляется не "остриё", а "излом" с углом 120°.

У длинных нелинейных волн на мелкой воде скорость движения любой точки профиля растёт с высотой, поэтому вершина волны догоняет её подножие; в результате крутизна переднего склона волны непрерывно увеличивается. Для относительно невысоких волн этот рост крутизны останавливает дисперсия, связанная с конечностью глубины водоёма; такие волны описываются Кортевега-де Фриса уравнением . Стационарные волны на мелководье могут быть периодическими или уединёнными (см. Солитон ); для них также существует критич. высота, при к-рой они обрушиваются. На распространение длинных волн существ. влияние оказывает рельеф дна. Так, подходя к пологому берегу, волны резко тормозятся и обрушиваются (прибой); при входе волны из моря в русло реки возможно образование крутого пенящегося фронта - бора, продвигающегося вверх по реке в виде отвесной стены. Волны цунами в районе очага землетрясения, их возбуждающего, почти незаметны, однако выходя на сравнительно мелководную прибрежную область - шельф, они иногда достигают большой высоты, представляя грозную опасность для береговых поселений.

В реальных условиях В. на п. ж. не являются плоскими, а имеют более сложную пространственную структуру, зависящую от характеристик их источника. Напр., упавший в воду камень порождает круговые волны (см. Цилиндрическая волна ).Движение судна возбуждает корабельные волны; одна система таких волн расходится от носа судна в виде "усов" (на глубокой воде угол между "усами" не зависит от скорости движения источника и близок к 39°), другая - движется за его кормой в направлении движения судна. Источники длинных волн в океане - силы притяжения Луны и Солнца, порождающие приливы, а также подводные землетрясения и Извержения вулканов - источники волн цунами.

Сложную структуру имеют ветровые волны, характеристики к-рых определяются скоростью ветра и временем его воздействия на волну. Механизм передачи энергии от ветра к волне связан с тем, что пульсации давления в потоке воздуха деформируют поверхность. В свою очередь эти деформации влияют на распределение давления воздуха вблизи водной поверхности, причём эти два эффекта могут усиливать друг друга, и в результате амплитуда возмущений поверхности нарастает (см. Автоколебания ). При этом фазовая скорость возбуждаемой волны близка к скорости ветра; благодаря такому синхронизму пульсации воздуха действуют "в такт" с чередованием возвышений и впадин (резонанс во времени и пространстве). Это условие может выполняться для волн разных частот, бегущих в разл. направлениях по отношению к ветру; получаемая ими энергия затем частично переходит и к другим волнам за счёт нелинейных взаимодействий (см. Волны) . В результате развитое волнение представляет собой случайный процесс, характеризуемый непрерывным распределением энергии по частотам и направлениям (пространственно-временным спектром). Волны, уходящие из области действия ветра (зыбь), приобретают более регулярную форму.

Волны, аналогичные В. на п. ж., существуют и на границе раздела двух несмешивающихся жидкостей (с.м. Внутренние волны ).

В океане волны изучаются разл. методами с помощью волнографов, следящих за колебаниями поверхности воды, а также дистанц. методами (фотографирование поверхности моря, использование радио- и гидролокаторов) - с судов, самолётов и ИСЗ.

Лит.: Баском В., Волны и пляжи, [пер. с англ.], Л., 1966; Tриккер Р., Бор, прибой, волнение и корабельные волны, [пер. с англ.], Л., 1969; Уизем Д ж., Линейные и нелинейные волны, пер. с англ., M., 1977; Физика океана, т. 2 - Гидродинамика океана, M., 1978; Кадомцев Б. Б., Pыдник В. И., Волны вокруг нас, M., 1981; Лайтхилл Дж., Волны в жидкостях, пер. с англ., M., 1981; Ле Блон П., Mайсек Л., Волны в океане, пер. с англ., [ч.] 1-2, M., 1981. Л. А. Островский .

Волна (Wave, surge, sea) - образуется благодаря сцеплению частиц жидкости и воздуха; скользя по гладкой поверхности воды, поначалу воздух создаёт рябь, а уже затем, действует на ее наклонные поверхности, развивает постепенно волнение водной массы. Опыт показал, что водяные частицы не имеют поступательного движения; перемещается только вертикально. Морскими волнами называют движение воды на морской поверхности, возникающее через определённые промежутки времени.

Высшая точка волны называется гребнем или вершиной волны, а низшая точка - подошвой . Высотой волны называется расстояние от гребня до её подошвы, а длина это расстояние между двумя гребнями или подошвами. Время между двумя гребнями или подошвами называется периодом волны.

Основные причины возникновения

В среднем высота волны во время шторма в океане достигает 7-8 метров, обычно может растянуться в длину - до 150 метров и до 250метров во время шторма.

В большинстве случаев морские волны образуются ветром.Сила и размеры таких волн зависят от силы ветра, а так-же его продолжительности и «разгона» - длины пути, на котором ветер действует на водную поверхность. Иногда волны, которые обрушиваются на побережье, могут зарождаются за тысячи километров от берега. Но есть ещё много других факторов возникновения морских волн: это приливообразующие силы Луны, Солнца, колебания атмосферного давления, извержения подводных вулканов, подводных землетрясений, движением морских судов.

Волны, наблюдаемые и в других водных пространствах, могут быть двух родов:

1) Ветровые , созданные ветром, принимающие по прекращении действия ветра установившийся характер и называемые установившимися волнами, или зыбью; Ветровые волны создаются вследствие воздействия ветра (передвижение воздушных масс) на поверхность воды, то есть нагнетания. Причина колебательных движений волн становится легко понятна, если заметить воздействие того же ветра на поверхность пшеничного поля. Хорошо заметна непостоянность ветровых потоков, которые и создают волны.

2) Волны перемещения , или стоячие волны, образуются в результате сильных толчков на дне при землетрясениях или возбужденные, например, резким изменением давления атмосферы. Данные волны носят также название одиночных волн.

В отличие от приливов, отливов и течений волны в не перемещают массы воды. Волны идут, но вода остается на месте. Лодка, которая качается на волнах, не уплывает вместе с волной. Она сможет немного переместиться по наклонной, только благодаря силе земной гравитации. Частицы воды в волне движутся по кольцам. Чем дальше эти кольца от поверхности, тем меньше они становятся и, наконец, исчезают совсем. Находясь в субмарине на глубине 70-80 метров, вы не ощутите действие морских волн даже при самом сильном шторме на поверхности.

Виды морских волн

Волны могут проходить огромные расстояния, не изменяя формы и практически не теряя энергии, долго после того, как вызвавший их ветер утихнет. Разбиваясь о берег, морские волны высвобождают огрмную энергию, накопленную за время странствия. Сила непрерывно разбивающихся волн по-разному изменяет форму берега. Разливающиеся и накатывающиеся волны намывают берег и поэтому называются конструктивными . Волны, обрушивающиеся на берег, постепенно разрушают его и смывают защищающие его пляжи. Поэтому они называются деструктивными .

Низкие, широкие, закругленные волны вдали от берега называются зыбью. Волны заставляют частички воды описывать кружки, кольца. Размер колец уменьшается с глубиной. По мере приближения волны к покатому берегу частицы воды в ней описывают все более сплющенные овалы. Приближаясь к берегу, морские волны больше не могут замкнуть свои овалы, и волна разбивается. На мелководье частицы воды больше не могут замкнуть свои овалы, и волна разбивается. Мысы образованы из более твердой породы и разрушаются медленнее, чем соседние участки берега. Крутые, высокие морские волны подтачивают скалистые утесы у основания, образуя ниши. Утесы порой обрушиваются. Сглаженная волнами терраса - это все, что остается от разрушенных морем скал. Иногда вода поднимается по вертикальным трещинам в скале до вершины и вырывается на поверхность, образуя воронку. Разрушительная сила волн расширяет трещины в скале, образуя пещеры. Когда волны подтачивают скалу с двух сторон, пока не соединятся в проломе, образуются арки. Когда верх арки падает в море, остаются каменные столбы. Их основания подтачиваются, и столбы обрушиваются, образуя валуны. Галька и песок на пляже - это результат эрозии.

Деструктивные волны постепенно размывают берег и уносят песок и гальку с морских пляжей. Обрушивая всю тяжесть своей воды и смытого материала на склоны и обрывы, волны разрушают их поверхность. Они вжимают воду и воздух в каждую трещину, каждую расщелину, часто с энергией взрыва, постепенно разделяя и ослабляя скалы. Отколовшиеся обломки скал используются для дальнейшего разрушения. Даже самые твердые скалы постепенно уничтожаются, и суша на берегу изменяется под действием волн. Волны могут разрушать морской берег с поразительной быстротой. В графстве Линкольншир, в Англии, эрозия (разрушение) надвигается со скоростью 2 м в год. С 1870 г., когда был построен самый большой в США маяк на мысе Гаттерас, море смыло пляжи на 426 м в глубину побережья.

Цунами

Цунами - это волны огромной разрушительной силы. Они вызываются подводными землетрясениями или извержениями вулканов и могут пересекать океаны быстрее, чем реактивный самолет: 1000 км/ч. В глубоких водах они могут быть ниже одного метра, но, приближаясь к берегу, замедляют свой бег и вырастают до 30-50 метров, прежде чем обрушиться, затопляя берег и сметая все на своем пути. 90% всех зарегистрированных цунами отмечено в Тихом океане.

Наиболее распространённые причины.

Около 80% случаев зарождения цунами являются подводные землетрясения . При землетрясении под водой происходит взаимное смещение дна по вертикали: часть дна опускается, а часть приподнимается. На поверхности воды происходят колебательные движения по вертикали, стремясь вернуться к исходному уровню, - среднему уровню моря, - и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции. Также, необходимо чтобы подводный толчок вошёл в резонанс с волновыми колебаниями.

Оползни . Цунами такого типа возникают чаще, чем это оценивали в ХХ веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 524 м. Подобного рода случаи достаточно редки и, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.

Вулканические извержения составляют примерно 5% всех случаев цунами. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру, в результате чего возникает длинная волна. Классический пример - цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности более 5000 кораблей, погибло около 36 000 человек.

Признаки появления цунами.

  • Внезапный быстрый отход воды от берега на значительное расстояние и осушка дна. Чем дальше отступило море, тем выше могут быть волны цунами. Люди, которые находятся на берегу и не знающие об опасности , могут остаться из любопытства или для сбора рыбы и ракушек. В данном случае необходимо как можно скорее покинуть берег и удалиться от него на максимальное расстояние - таким правилом следует руководствоваться, находясь, например, в Японии, на Индоокеанском побережье Индонезии, Камчатке. В случае телецунами волна обычно подходит без отступления воды.
  • Землетрясение . Эпицентр землетрясения находится, как правило, в океане. На берегу землетрясение обычно гораздо слабее, а часто его нет вообще. В цунамоопасных регионах есть правило, что если ощущается землетрясение, то лучше уйти дальше от берега и при этом забраться на холм, таким образом заранее подготовиться к приходу волны.
  • Необычный дрейф льда и других плавающих предметов, образование трещин в припае.
  • Громадные взбросы у кромок неподвижного льда и рифов, образование толчеи, течений.

Волны-убийцы

Волны-убийцы (Блужда́ющие во́лны, волны-монстры, freak wave - аномальная волна) - гигантские волны, возникающие в океане, высотой более 30 метров, обладают несвойственным для морских волн поведением.

Еще каких-то 10-15 лет назад ученые считали истории моряков об исполинских волнах-убийцах, которые возникают из ниоткуда и топят корабли, всего лишь морским фольклором. Долгое время блуждающие волны считались выдумкой, так как они не укладывались ни в одну существовавшую на то время математические модели расчётов возникновения и их поведения, потому как волны высотой более 21 метра в океанах планеты Земля не могут существовать.

Одно из первых описаний волны-монстра относится к 1826 году. Её высота была более 25 метров и заметили её в Атлантическом океане недалеко от Бискайского залива. Этому сообщению никто не поверил. А в 1840 году мореплаватель Дюмон д"Юрвиль рискнул явиться на заседание Французского географического общества и заявить, что своими глазами видел 35-метровую волну. Присутствующие подняли его на смех. Но историй о громадных волнах-призраках, которые появлялись внезапно посреди океана даже при небольшом шторме, и своей крутизной походили на отвесные стены воды, становилось все больше.

Исторические свидетельства "волн-убийц"

Так, в 1933 году корабль ВМС США "Рамапо" попал в шторм в Тихом океане. Семь суток корабль бросало по волнам. А утром 7 февраля сзади внезапно подкрался невероятной высоты вал. Вначале судно швырнуло в глубокую пропасть, а потом подняло почти вертикально на гору пенящейся воды. Экипаж, которому посчастливилось выжить, зафиксировал высоту волны - 34 метра. Двигалась она со скоростью 23 м/сек, или 85 км/ч. Пока что это считается самой высокой когда-либо измеренной волной-убийцей.

Во время Второй мировой войны, в 1942 году, лайнер "Королева Мария" вез 16 тыс. американских военных из Нью-Йорка в Великобританию (между прочим, рекорд по количеству человек, перевозимых на одном судне). Неожиданно возникла 28-метровая волна. "Верхняя палуба была на обычной высоте, и вдруг - раз! - она резко ушла вниз", - вспоминал доктор Норвал Картер, находившийся на борту злополучного корабля. Корабль накренился под углом 53 градуса - если бы угол составил хотя бы на три градуса больше, гибель была бы неизбежной. История "Королевы Марии" легла в основу голливудского фильма "Посейдон".

Однако 1 января 1995 года на нефтяной платформе «Дропнер» в Северном море у побережья Норвегии была впервые приборно зафиксирована волна высотой в 25,6 метров, названная волной Дропнера. Проект "Максимальная волна" позволил по-новому посмотреть на причины гибели сухогрузов судов, которые перевозили контейнеры и другие немаловажные грузы. Дальнейшие исследования зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 20 метров. Новый проект получил название Wave Atlas (Атлас волн), в котором предусматривается составление всемирной карты наблюдавшихся волн-монстров и её последующую обработку и дополнение.

Причины возникновения

Существует несколько гипотез о причинах возникновения экстремальных волн. Многие из них лишены здравого смысла. Наиболее простые объяснения построены на анализе простой суперпозиции волн разной длины. Оценки, однако, показывают, что вероятность экстремальных волн в такой схеме оказывается слишком мала. Другая заслуживающая внимания гипотеза предполагает возможность фокусировки волновой энергии в некоторых структурах поверхностных течений. Эти структуры, однако, слишком специфичны для того, чтобы механизм фокусировки энергии мог объяснить систематическое возникновение экстремальных волн. Наиболее достоверное объяснение возникновения экстремальных волн должно основываться на внутренних механизмах нелинейных поверхностных волн без привлечения внешних факторов.

Интересно, что такие волны могут быть как гребнями, так и впадинами, что подтверждается очевидцами. Дальнейшее исследование привлекает эффекты нелинейности в ветровых волнах, способные приводить к образованию небольших групп волн (пакетов) или отдельных волн (солитонов), способных проходить большие расстояния без значительного изменения своей структуры. Подобные пакеты также неоднократно наблюдались на практике. Характерными особенностями таких групп волн, подтверждающими данную теорию, является то, что они движутся независимо от прочего волнения и имеют небольшую ширину (менее 1 км), причем высоты резко спадают по краям.

Впрочем, полностью прояснить природу аномальных волн пока не удалось.

Любое локальное нарушение горизонтальности поверхности жидкости приводит к появлению волн, которые распространяются по поверхности и быстро затухают с глубиной. Возникновение волн происходит из-за совместного действия силы тяжести и силы инерции (гравитационные гидродинамические волны) или силы поверхностного натяжения и силы инерции (капиллярные волны).

Приведем ряд результатов по гидродинамике поверхностного волнения жидкости, которые понадобятся нам в дальнейшем . Можно существенно упростить задачу, если считать жидкость идеальной; учет диссипации необходим главным образом для капиллярных и коротких гравитационных волн.

Считая смещения частиц жидкости малыми, можно ограничиться линейной задачей и пренебречь в уравнении Эйлера нелинейным членом что соответствует малости амплитуды волны по сравнению с ее длиной X. Тогда для несжимаемой жидкости волновое движение на ее поверхности без учета сил поверхностного натяжения определяется такой системой уравнений для потенциала (напомним, что :

Направлена вертикально вверх и соответствует невозмущенной поверхности жидкости).

Для неограниченной поверхности жидкости, глубина которой значительно больше длины волны, можно искать решение задачи в виде распространяющейся в положительном направлении х и затухающей с глубиной плоской неоднородной волны:

где - частота волны и волновое число, где - фазовая скорость. Подставляя это значение потенциала в уравнение (6.1), а также учитывая, что решения имеют смысл для , получаем выражение для потенциала:

а удовлетворяя граничному условию на поверхности жидкости дисперсионное уравнение

Таким образом, групповая скорость распространения гравитационной волны

тогда как фазовая скорость такой волны

Как видно, гравитационные волны обладают дисперсией; с увеличением длины волны их фазовая скорость растет.

Интересен вопрос о том, каково распределение скоростей частиц жидкости в волне; оно находится дифференцированием потенциала (6.3) по х.

Рис. 1.4. Дисперсионная кривая для гравитационно-капиллярных волн на поверхности глубокой воды в области, где существенны и g, и а.

Рассмотрение показывает, что частицы жидкости в волне описывают движение приблизительно по окружности (вокруг своих равновесных точек ), радиус которых экспоненциально спадает с глубиной. На глубине, равной одной длине волны, ее амплитуда примерно в 535 раз меньше, чем вблизи поверхности. Приведенные результаты относились к волнам на глубокой воде, когда где h - глубина жидкости. Если имеет место противоположный случай (например, волны распространяются в канале конечной, но малой глубины), то

Как видно, такие волны дисперсией не обладают.

С учетом капиллярной силы Лапласа, обусловленной поверхностным натяжением 0,

т. е., в отличие от гравитационных, скорость капиллярных волн растет с уменьшением длины волны. Совместное действие силы тяжести и силы поверхностного натяжения определяется таким дисперсионным уравнением (глубокая вода):

На рис. 1.4 показана зависимость фазовой скорости распространения волн на поверхности жидкости от длины волны для воды согласно выражению (6.9). Из этого рисунка видно, что при см имеет место минимум скорости поверхностных волн, являющихся смешанными гравитационно-капиллярными волнами..

Приведенные результаты относились к одномерным линейным волнам в отсутствие диссипации. Кроме того, считалось, что волны регулярные и распространяются в одном направлении. Волны, возникающие при движении корабля в спокойной воде или при подходе к мелкому берегу, действительно представляют собой

регулярные возмущения. Волны же на поверхности жидкости, возникающие под действием ветра, преимущественно случайные - они движутся в разных направлениях и имеют разные частоты и амплитуды; именно такую картину мы наблюдаем, находясь на корабле в открытом море в ветренную погоду.

Затухание гравитационных волн с длинами волн более метра мало, но оно все же значительно больше, чем это следует из линейной теории. Это расхождение, очевидно, вызвано процессами, связанными с нелинейностью при распространении гравитационных и капиллярных волн. Так, если одиночная волна распространяется на мелкой воде с фазовой скоростью , то такая волна не обладает дисперсией. Ее профиль по мере распространения становится круче благодаря тому, что верхние частицы среды, для которых глубина h больше, чем для нижних частиц, будут двигаться с большей скоростью, согласно (6.7), и волна начнет захлестываться; при подходе к берегу волна обрушивается на него. Эффект захлестывания усиливается еще и потому, что при уменьшении глубины h возрастает амплитуда волны по закону сохранения лотока энергии плотность энергии возрастает из-за уменьшения поперечного сечения слоя воды. С ростом же нелинейные эффекты проявляются еще сильнее. Процесс «укручения» волн при их распространении происходит и на глубокой воде вследствие нелинейности уравнений движения. Теория нелинейных волн на ловерхности жидкости получила большое развитие в последнее время, хотя первые работы в этом направлении были сделаны еще в конце прошлого века.

Если имеется несколько волн, они нелинейно взаимодействуют друг с другом; принцип суперпозиции для волн конечной амплитуды уже не соблюдается. Условия нелинейного взаимодействия гравитационных волн, благодаря их дисперсионным свойствам, отличаются интересными особенностями, на которых мы здесь не имеем возможности остановиться. Отметим лишь, что реально существующее взаимодействие случайных волн конечной амплитуды в принципе объясняет значительно большее затухание волн на поверхности, чем это предсказывает линейная теория. Действует механизм поглощения за счет нелинейного взаимодействия; энергия из области малых волновых чисел (длинные волны) перекачивается в области все меньших длин волн и, наконец, - в капиллярную область спектра, где она в конечном счете диссипируется за счет вязкости, переходя в тепло .

В гл. 3 мы будем иметь дело с нелинейными звуковыми волнами и еще вернемся к вопросам взаимодействия волн на поверхности жидкости.


ОПРЕДЕЛЕНИЕ

Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Этот вектор, называется вектором потока. (Для упругих волн – вектор Умова).

Теория про уравнение бегущей волны

Когда мы говорим о движении тела, то имеем в виду перемещение в пространстве его самого. В случае же волнового движения речь идет не о перемещении среды или поля, а о перемещении возбужденного состояния среды или поля. В волне определенное состояние, сначала локализованное в одном месте пространства, передается (перемещается) в другие, соседние точки пространства.

Состояние среды или поля в данной точке пространства характеризуется одним или несколькими параметрами. Такими параметрами, например, в волне, образуемой на струне, является отклонение данного участка струны от положения равновесия (х), в звуковой волне в воздухе — это величина, характеризующая сжатие или расширение , в — это модули векторов и . Важнейшим понятием для любой волны является фаза. Под фазой понимается состояние волны в данной точке и в данный момент времени, описанное соответствующими параметрами. Например, фаза электромагнитной волны задается модулями векторов и . Фаза от точки к точке меняется. Таким обpазом, фаза волны в математическом смысле есть функция координат и времени. С понятием фазы связано понятие волновой поверхности. Это поверхность, все точки которой в данный момент времени находятся в одной и той же фазе, т.е. это поверхность постоянной фазы.

Понятия волновой поверхности и фазы позволяют провести некоторую классификацию волн по характеру их поведения в пространстве и времени. Если волновые поверхности перемещаются в пространстве (например, обычные волны на поверхности воды), то волна называется бегущей.

Бегущие волны можно разделить на: и цилиндрические.

Уравнение бегущей плоской волны

В экспоненциальной форме уравнение сферической волны имеет вид:

где – комплексная амплитуда. Везде, кроме особой точки r=0, функция x удовлетворяет волновому уравнению .

Уравнение цилиндрическое бегущей волны:

где r – расстояние от оси.

где – комплексная амплитуда.

Примеры решения задач

ПРИМЕР 1

Задание Плоская незатухающая звуковая волна возбуждается источником колебаний частоты источника a. Напишите уравнение колебаний источника x(0,t), если в начальный момент смещение точек источника максимально.
Решение Запишем уравнение бегущей волны, зная, что она плоская:

Используем в записи уравнения w=, запишем (1.1) в начальный момент времени (t=0):

Из условий задачи известно, что в начальный момент смещение точек источника максимально. Следовательно, .

Получим: , отсюда в точке, где расположен источник (т.е. при r=0).

Поверхностные волны

Типичное ПАВ устройство, используемое, например, в качестве полосового фильтра . Поверхностная волна генерируется слева через приложение переменного напряжения через проводники, изготовленные печатным методом. При этом электрическая энергия преобразуется в механическую. Двигаясь по поверхности механическая высокочастотная волна меняется. Справа - приёмные дорожки снимают сигнал, при этом происходит обратное преобразование механической энергии в переменный электрический ток, через нагрузочный резистор.

Пове́рхностные акусти́ческие во́лны (ПАВ) - упругие волны , распространяющиеся вдоль поверхности твёрдого тела или вдоль границы с другими средами. ПАВ подразделяются на два типа: с вертикальной поляризацией и с горизонтальной поляризацией (волны Лява ).

К наиболее часто встречающимся частным случаям поверхностных волн можно отнести следующие:

  • Волны Рэлея (или рэлеевские), в классическом понимании распространяющиеся вдоль границы упругого полупространства с вакуумом или достаточно разреженной газовой средой.
  • на границе твердого тела с жидкостью.
  • Волна Стонли
  • Волны Лява - поверхностные волны с горизонтальной поляризацией (SH типа), которые могут распространяться в структуре упругий слой на упругом полупространстве.

Волны Рэлея

Волны Релея, теоретически открытые Релеем в 1885 году, могут существовать в твердом теле вблизи его свободной поверхности, граничащей с вакуумом. Фазовая скорость таких волн направлена параллельно поверхности, а колеблющиеся вблизи нее частицы среды имеют как поперечную, перпендикулярную поверхности, так и продольную составляющие вектора смещения. Эти частицы описывают при своих колебаниях эллиптические траектории в плоскости, перпендикулярной поверхности и проходящей через направление фазовой скорости. Указанная плоскость называется сагиттальной. Амплитуды продольных и поперечных колебаний уменьшаются по мере удаления от поверхности вглубь среды по экспоненциальным законам с различными коэффициентами затухания. Это приводит к тому, что эллипс деформируется и поляризация вдали от поверхности может стать линейной. Проникновение волны Релея в глубину звукопровода составляет величину порядка длины поверхностной волны. Если волна Релея возбуждена в пьезоэлектрике, то как внутри него, так и над его поверхностью в вакууме будет существовать медленная волна электрического поля, вызванная прямым пьезоэффектом.

Применяются в сенсорных дисплеях с поверхностными акустическими волнами.

Затухающие волны рэлеевского типа

Затухающие волны рэлеевского типа на границе твердого тела с жидкостью.

Незатухающая волна с вертикальной поляризацией

Незатухающая волна с вертикальной поляризацией , бегущая по границе жидкости и твердого тела со скоростью

Волна Стонли

Волна Стонли , распространяющаяся вдоль плоской границы двух твердых сред, модули упругости и плотности которых не сильно различаются.

Волны Лява

Ссылки

  • Физическая энциклопедия, т.3 - М.:Большая Российская Энциклопедия стр.649 и стр.650 .

Wikimedia Foundation . 2010 .

  • Поверхностно-акустические волны
  • Поверхностные упругие волны

Смотреть что такое "Поверхностные волны" в других словарях:

    ПОВЕРХНОСТНЫЕ ВОЛНЫ - электромагнитные, волны, распространяющиеся вдоль нек рой поверхности и имеющие распределение полей E, Н, достаточно быстро убывающее при удалении от неё в одну (односторонняя П. в.) или обе (истинная П. в.) стороны. Односторонняя Ц. в. возникает … Физическая энциклопедия

    ПОВЕРХНОСТНЫЕ ВОЛНЫ - (см.), возникающие и на свободной поверхности жидкости или распространяющиеся по поверхности раздела двух несмешивающихся жидкостей под воздействием внешней причины (ветер, брошенный камень и др.), выводящей поверхность из состояния равновесия… … Большая политехническая энциклопедия

    поверхностные волны - — Тематики нефтегазовая промышленность EN surface waves …

    ПОВЕРХНОСТНЫЕ ВОЛНЫ - волны, распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей П. в. возникают под влиянием внеш. воздействия (напр.. ветра), выводящего поверхность жидкости из равновесного состояния. В… … Большой энциклопедический политехнический словарь

    Поверхностные волны - Упругие волны, распространяющиеся вдоль свободной поверхности твёрдого тела или вдоль границы твёрдого тела с другими средами и затухающие при удалении от границы. Простейшими и вместе с тем наиболее часто встречающимися на практике П. в … Большая советская энциклопедия

    поверхностные волны-помехи - — Тематики нефтегазовая промышленность EN ground rollssurface wave noise … Справочник технического переводчика

    ПОВЕРХНОСТНЫЕ АКУСТИЧЕСКИЕ ВОЛНЫ - (ПАВ), упругие волны, распространяющиеся вдоль свободной поверхности тв. тела или вдоль границы тв. тела с др. средами и затухающие при удалении от границ. ПАВ бывают двух типов: с вертикальной поляризацией, у к рых вектор колебат. смещения ч ц… … Физическая энциклопедия

    Волны Рэлея - поверхностные акустические волны. Названы в честь Рэлея теоретически предсказавшего их в 1885 году. Содержание 1 Описание 2 Изотропное тело … Википедия

    Волны Лява - Волны Лява упругая волна с горизонтальной поляризацией. Может быть как объёмной так и поверхностной. Названа в честь Лява (англ. Love) исследовавшего этот тип волн в приложении к сейсмологии в 1911 году. Содержание 1 Описание … Википедия

    Поверхностные акустические волны - Типичное ПАВ устройство, в основе которого применяется встречно гребенчатый преобразователь, используемое в качестве полосового фильтра. Поверхностная волна генерируется слева через приложение переменного напряжения через про … Википедия