Хроматография на бумаге. Черт.2. Камера для горизонтальной хроматографии

  • 30.08.2023

Распределительная хроматография. Бумажная хроматография. Осадочная хроматография. Понятие оситовой (эксклюзионной) хроматографии. Гель-хроматография.

Распределительная хромотография.

хроматографический метод, при котором неподвижная (стационарная) фаза химически связана с поверхностью неподвижного носителя. Подвижной фазой является жидкость, которая служит растворителем, или газ (газовая хроматография). Разделение происходит за счёт различия полярности разделяемых веществ. При распределительной хроматографии носитель пропитывается одним из растворителей (“неподвижный растворитель”), а другой растворитель (“подвижный ”) пропускают через колонку носителя. В качестве неподвижного растворителя чаще всего берут воду или другие полярные жидкости (серную кислоту, метиловый спирт и т.д.); в качестве подвижного растворителя - менее полярные жидкости, не смешивающиеся с первыми во всех соотношениях. Порцию исследуемой смеси веществ, растворенную в подвижном растворителе, вводят в колонку и после того, как раствор впитается верхней частью колонки, начинают промывание колонки чистым подвижным растворителем. В процессе промывания происходит непрерывное перераспределение веществ смеси между двумя несмешивающимися жидкими фазами. Так как разные компоненты смеси имеют различные коэффициенты распределения, скорость передвижения отдельных компонентов различная. Наибольшей скоростью движения будет обладать тот компонент смеси, который имеет наибольший коэффициент распределения: C

C = неподв.

т.е. отношение концентраций растворенного вещества в подвижной фазе к его концентрации в неподвижной фазе.

Одним из основных условий получения четкого разделения смеси методом распределительной хроматографии является практическое отсутствие какого-либо взаимодействия компонентов смеси с носителем. Если это условие соблюдается, то при промывании колонки происходит полное разделение смеси. Число носителей, пригодных для распределительной хроматографии, крайне ограничено. Более или менее удовлетворительными качествами обладают такие носители, как особым образом, приготовленный силикагель, очищенный крахмал, целлюлоза.



Бумажная хромотография.

берется полоса фильтровальной бумаги длиной 30-50 см и шириной 1,5 см. На один из концов этой полосы на некотором расстоянии от края наносится капля смеси анализируемых веществ. Затем этот конец бумаги опускается в ванночку, содержащую органический растворитель, насыщенный водой. При медленном продвижении растворителя через поры бумаги происходит непрерывное перераспределение веществ смеси между двумя жидкими фазами. Если разные компоненты смеси имеют различные коэффициенты распределения, то скорость продвижения отдельных компонентов смеси будет различной. Движение подвижного растворителя по бумаге может быть как нисходящим, так и восходящим. После того, как хроматографирование заканчивается, полосу бумаги высушивают и затем проявляют реактивом, дающим цветную реакцию с анализируемыми соединениями. Полученная хроматограмма представляет собой совокупность цветных пятен, расположенных в определенном порядке вдоль полосы бумаги.

Рис. 22. А - восходящая хроматограмма; Б - нисходящая хроматограмма; 1 - сосуд для хроматографирования; 2 - резервуар с растворителем; 3 - хроматографическая бумага; 4 - стартовые точки; 5 - разделенные компоненты; 6 - фронт растворителя.

При нисходящей хроматографии растворитель движется вниз по бумаге из расположенного в верхней части сосуда резервуара с растворителем. Таким способом можно элюировать отдельные компоненты. Наиболее распространенные системы растворителей: СН3СООН-Н2O (15:85 объем), 1-бутанол - СН3СООН-Н20 (4:1:5), 2-пропанол - NH3 (конц.) - Н2O (9:1:2), 1-бутанол - 1,5 н. NH3 (1:1), фенол - вода и др. Состав подвижной фазы обычно подбирают экспериментально или ориентируясь на данные, приведенные в справочниках или монографиях по бумажной хроматографии.

Осадочная хроматография - метод хроматографии, основанный на способности разделяемых веществ образовывать малорастворимые соединения с различными произведениями растворимости. В качестве неподвижной фазы выступает инертный носитель, покрытый слоем осадителя; разделяемые вещества, находящиеся в подвижной фазе, вступают во взаимодействие с осадителем и образуют малорастворимые вещества - осадки. При дальнейшем пропускании растворителя происходят поочерёдно: растворение этих осадков, перенос вещества по слою неподвижной фазы, снова осаждение и т. д. При этом скорость перемещения осадка по неподвижной фазе пропорциональна его произведению растворимости (ПР). Хроматограммой в данном случае будет являться распределение осадков по слою носителя. В качестве примера можно привести разделение галогенид-ионов на носителе (силикагель, целлюлоза и т. д.), пропитанном солью серебра. Можно использовать для разделения осадков их неодинаковую растворимость в различных растворителях или в растворах с различной ионной силой. Реализуется как в колоночном, так и в плоскостном варианте.

Гель-фильтрация или эксклюзионная хроматография (ситовая, гель-проникающая, гель-фильтрационная хроматография) - разновидность хроматографии, в ходе которой молекулы веществ разделяются по размеру за счёт их разной способности проникать в поры неподвижной фазы. При этом первыми выходят из колонки наиболее крупные молекулы (бо́льшей молекулярной массы), способные проникать в минимальное число пор стационарной фазы. Последними выходят вещества с малыми размерами молекул, свободно проникающие в поры. В отличие от адсорбционной хроматографии, при гель-фильтрации стационарная фаза остается химически инертной и с разделяемыми веществами не взаимодействует. В колонку вносят раствор образца, объём которого является лимитирующим для качества хроматографии. Для аналитических разделений он не должен превышать 0,1 % от CV (общего объёма колонки), а для препаративной очистки он должен быть не выше 8-10 % от CV. Колонка упакована порошком, частицы или гранулы которого имеют поры определенного диаметра. Высокомолекулярные вещества, не входящие в поры, проходят между гранулами, поэтому их объём удержания равен объёму колонки за вычетом объёма стационарной фазы (так называемый, свободный объем). Они элюируются первыми. Молекулы средних размеров помещаются в поры сорбента, но не полностью. Поэтому их объём удержания несколько выше свободного объёма. Они элюируется вторыми. Самые мелкие молекулы свободно входят в поры вместе с молекулами растворителя. Поэтому их объём удержания в колонке намного выше свободного и приближается к общему объёму колонки (то есть 100 % CV). Они элюируются последними.

Качественный химический анализ. Классификация методов качественного анализа (дробный и систематический, макро-, полумикро-, микро-, ультрамикроанализ). Аналитические реакции и реагенты, используемые в качественном анализе (специфические, селективные, групповые). Использование качественного анализа в фармации.

Качественный анализ - идентификация (обнаружение) компонентов анализируемых веществ и приблизительная оценка количества их содержания в веществах и материалах. В качестве компонентов могут быть атомы и ионы, изотопы элементов и отдельные нуклииды, молекулы, функциональные группы и радикалы, фазы и т.д.

Классификация методов Метод анализа выбирают в зависимости от предполагаемого содержания вещества и от предела обнаружения применяемой реакции. В настоящее время при изучении качественного химического анализа в учебных лабораториях применяется полумикроанализ.

3.4. Хроматография на бумаге

По механизму разделения различают распределительную, адсорбцион­ную, осадочную и другие виды бумажной хроматографии (БХ). В распре­делительной жидкость-жидкостной хроматографии бумага, приготовлен­ная из специальных сортов хлопка, выполняет роль носителя неподвижной жидкой фазы (НФ), в качестве которой часто выступает вода, адсорбиро­ванная парами бумаги. В таком случае гидрофильная бумага используется для нормально-фазовой хроматографии.

Растворителями (ПФ) являются спирты (метанол, этанол, н-пропанол, бутанол), простые эфиры (этиловый, метиловый), кетоны (ацетон, ацетил-ацетон), эфиры органических кислот (метилацетат, этилацетат), пиридин, хлороформ. Чаще используются смеси растворителей. Так, для разделения неорганических неполярных веществ употребляют системы:

Ацетон: НCl: Н 2 О (в различных соотношениях);

Н-бутанол, насыщенный НСl (различной концентрации);

Н-бутанол: 0,1М НNОз - ацетилацетон.

Для разделения некоторых органических веществ используют метод обращенных фаз. В этом методе для придания бумаге гидрофобного харак­тера ее импрегнируют (пропитывают) нафталином, парафином, раствором каучука, силиконом и др. Такая бумага служит носителем для неполярных растворителей в качестве НФ. В качестве ПФ применяют смеси кислот с низшими спиртами.

Обращеннофазовая бумажная хроматография использу­ется, например, для разделения и идентификации полинасы­щенных жирных кислот при изучении состава липидов, вы­деленных из животных тканей. Бумагу пропитывают 5% рас­твором силикона, в качестве ПФ используют 85% раствор уксусной кислоты.

Рис.3.4.1. Виды бумажной хроматографии

Разделение веществ в распределительной БХ осуществляется благодаря различию в скоростях движения компонентов при многократном повторе­нии актов экстракции и сорбции. Скорость перемещения компонентов за­висит от их коэффициентов распределения (как и в методе экстракции).

По направлению движения элюента (ПФ) различают восходящую, нис­ходящую и радиальную (круговую) хроматографию.

Если элюент движется по бумаге вверх, метод называют восходящей (а) бумажной хроматографией; при его движении сверху вниз - нисходя­щей (б) бумажной хроматографией. Очень быстро можно осуществить хроматографический анализ методом радиальной (в) бумажной хромато­графии, в котором используется бумажный круг (г) с фитилем, опущен­ным в элюент. (рис. 3.4.1)

Иногда при сложном составе пробы не удается разделить ее компонен­ты с помощью одного растворителя. Тогда применяют двумерную хрома­тографию. В угол квадратного листа хроматографической бумаги наносят хроматографической бумаги наносят раствор пробы и хроматографируют сначала в одном элюенте, затем, по­вернув хроматограмму на 90, - в другом. Первый элюент производит предварительное разделение компо­нентов пробы, второй окончатель­ное (рис.3.4.2).

Рис.3.4.2. Двухмерная хроматография

Для проведения хроматографии на бумаге используют стеклянные герметизированные камеры. Внутри ка­меры в верхней (нисходящий вариант) или нижней ее части (восходящий вариант) помещают сосуд для подвижной фазы (лодочку).

Радиальную хроматографию можно осуществить в чашке Петри. Детекцию зон, идентификацию и количественное определение в БХ проводят также, как и в методе тонкослойной хроматографии.

Методом распределительной жидкостной бумажной хроматографии успешно анализируют смеси катионов в неорганическом качественном анализе, смеси аминокислот и других органических кислот, пептидов, пес­тицидов, фенолов, красителей, синтетических поверхностно-активных ве­ществ.

3.5. Гельпроникающая (молекулярно-ситовая) хроматография

Гельпроникающая хроматография (ГПХ) представляет собой метод разделения молекул, основанный на различии из размеров.

В качестве НФ в ГПХ используют частицы, имеющие определенные размеры пор. Это различного рода гели (мягкие, полужесткие и жесткие). В качестве ПФ служат водные или органические элюенты. Принцип разде­ления молекул в ГПХ состоит в том, что молекулы анализируемых ве­ществ распределены между неподвижным растворителем в порах сорбента и растворителем, протекающим через слой НФ. Молекулы, которые имеют размеры, позволяющие им проникать в поры сорбента при движении вдоль колонки, часть времени теряют на пребывание в порах. Молекулы, имею­щие размеры, превышающие размеры пор, не проникают в сорбент и вы­мываются из колонки со скоростью движения элюента. Молекулы, кото­рые проникают в поры всех размеров, движутся наиболее медленно. Сни­жение скорости движения веществ вдоль колонки тем больше, чем в боль­шее число пор способны диффундировать распределяемые частицы.

Таким образом, при помощи ГПХ можно разделить смеси веществ в за­висимости от размеров их молекул. Выход веществ из колонки происходит в порядке уменьшения их молекулярной массы. Так можно разделить полипептиды, белки и другие макромолекулы.

Гельпроникающая хроматография на колонке используется для очистки пестицидов, а также жирорастворимых витаминов перед их определением методом ВЖХ.

Электрофорез

Метод анализа, основанный на способности заряженных частиц к пере­движению во внешнем электрическом поле называют электрофорезом (от “электро” и греческого phoresis - перенесение).

Электролиз относится к методам разделения без превращения веществ, на основе заряда частиц. По технике выполнения метод аналогичен хроматографии, поэтому и рассматривается в этой главе.

Рис 3.5.1. Схема прибора для электрофореза.

Нередко под электрофорезом понимают перемещение коллоидных час­тиц или макромолекул, в отличие от иовофореза - перемещения неоргани­ческих ионов малого размера.

Передвижение частиц при электрофорезе зависит от ряда факторов, ос­новными из которых являются: напряженность электрического поля; вели­чина электрического заряда; скорость и размер частицы; вязкость, рН и температура среды, а также продолжительность электрофореза.

Электрофорез можно проводить как в свободном растворе (фронталь­ный электрофорез), так и на носителях (зональный электрофорез). Послед­ний вариант предпочтительнее, т.к. носители способствуют стабилизации электрофоретических зон. В качестве носителей используют: фильтро­вальную бумагу, силикагель, крахмал, оксид алюминия, поливинилхлорид, агаровый и полиакриламидный гели и др.

Электрофоретическое разделение осуществляют на бумаге, в тонком слое сорбента, колонке или в блоке (который часто формируют из суспен­зии крахмала в подходящем электролите).

Аппаратура для электрофо­реза выполняется по единой схеме: источник тока, камера для электрофореза, два элек­трода, соединяющих камеру с источником тока и приспособ­ление для сбора и идентифика­ции разделенных веществ (по­следний блок в некоторых слу­чаях отсутствует). Для элек­трофореза используют как готовые наборы аппаратуры (универсальный прибор для иммуноэлектрофореза и электрофореза белков на бумаге и крахмале, набор для электрофоре­за в полиакриламидном геле венгерской фирмы Реанал), так и наборы, со­ставляемые экспериментатором из отдельных приборов.

На рис. 3.5.1 представлена схема прибора для электрофореза на бумаге. Электрофоретическая камера состоит из двух кювет, в которые помещают графитовые электроды и раствор проводящей жидкости (буферный рас­твор). Выше кювет находится подставка для носителя бумаги. Смесь ве­ществ, подлежащих разделению, наносят на пропитанную проводящей жидкостью бумагу. Бумагу подсушивают, помещают на подставку, концы погружают в кюветы, затем камеру плотно закрывают крышкой. После пропитывания бумаги проводящей жидкостью подключают электрический ток. По окончании электрофореза бумагу подсушивают. Качественную и количественную оценку осуществляют, применяя методы, используемые в бумажной хроматографии, например, проявление белков с помощью кра­сителей, количественную оценку - методом денситометрии.

Важной областью применения электрофореза является анализ белков сыворотки крови, аминокислот гидролизатов белков, нуклеиновых кислот и т.п. В кислотном буферном растворе аминокислота находится в виде катиона NHз + ......COOH, который будет перемещаться к катоду, в то время как в щелочном буфере аминокислота превращается в анион NH 2 ....COO - , и будет дви­гаться к аноду. В изоэлектрической точке аминокислота находится в растворе в виде биполяр­ного иона NH 3 + ......COO - и не будет передвигаться в электрическом поле.

Рис. 3.5.2. Электрофореграмма (а) и схемы (б) белковых фракций.

A - белковые фракции сыров: 1, 17 – российского, 2, 16 - волжского, 3, 15 – “Орбита”, 4, 14 - колбасного, 5, 13 – голландского, 6, 12 – пошехонского, 7, 11 – “сырного” казеина после осаждения при pH 4,6, 8, 10 – молочной сыворотки, 9 – казеина по Гаммерстену, 18 – “городского”.

Б – белковые фракции сыра (I), сырного казеина (II)

Ввиду того, что отдельные белки и аминокислоты имеют различные изоэлектрические точки, при определенном значении рН они будут двигаться с различной скоро­стью. Подбирая соответствующие буферные растворы для установления определенной скорости движения и растворимости веществ, можно ис­пользовать электрофорез для их разделения. Метод позволяет разделять вещества, различие в изоэлектрической точке которых составляет до 0,02 единиц рН. Градиент рН в 0,02 единицы часто достигают прибавлением амфолитов, представляющих собой готовую смесь алифатических полиаминаполикарбоновых кислот.

Электрофоретическое разделение белков широко используется для оценки качества мяса и мясных продуктов, для дифференцирования вида мяса и рыбы. Метод также применяется для выявления немясных добавок (белков молока, сои, яиц) в мясных продуктах. С помощью электрофореза в полиакриламидном геле можно охарактеризовать изменение белков в процессе созревания сыров (рис.3.5.2).

В настоящее время используют высокоэффективный капиллярный электрофорез, например, для анализа витаминов в диетических продуктах (жирорастворимых А, Е, К, Д; водорастворимых - B 1 , B 2 , B 6 , B 12 , С, никотинамида); и для определения анионов (сульфат - хлорид-, иодид-) в мо­лочных продуктах.

ГОСТ 28365-89

Группа Л59

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

РЕАКТИВЫ

Метод бумажной хроматографии

Reagents. Method of paper chromatography


МКС 71.040.30
ОКСТУ 2609

Дата введения 1991-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ВНЕСЕН Министерством химической промышленности СССР

2. Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 13.12.89 N 3708 стандарт Совета Экономической Взаимопомощи СТ СЭВ 6397-88 введен в действие непосредственно в качестве государственного стандарта СССР с 01.01.91

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта

5. ПЕРЕИЗДАНИЕ. Май 2008 г.


Настоящий стандарт распространяется на химические реактивы и устанавливает метод проведения испытания, основанный на бумажной хроматографии.

Термины, применяемые в стандарте, и их пояснения приведены в приложении 2. Рекомендуемые области применения метода приведены в приложении 3.

1. ОБЩИЕ УКАЗАНИЯ

1. ОБЩИЕ УКАЗАНИЯ

1.1. При проведении испытаний должны быть соблюдены требования ГОСТ 27025 .

1.2. В нормативно-технической документации на испытуемый реактив должны быть указаны следующие данные:

1.2.1. Описание приготовления испытуемого раствора.

1.2.2. Предварительная обработка (при необходимости).

1.2.3. Используемые растворители (или смесь).

1.2.4. Применяемые реактивы и растворы.

1.2.5. Способ хроматографирования.

1.2.6. Тип хроматографической бумаги, необходимость предварительной пропитки бумаги, пропитывающие растворы, продолжительность сушки после пропитки (при необходимости).

1.2.7. Время насыщения хроматографической камеры парами подвижной фазы.

1.2.8. Объем испытуемого раствора, наносимый на бумагу.

1.2.9. Температура, при которой проводят хроматографирование (при необходимости).

1.2.10. Критерии окончания процесса хроматографирования.

1.2.11. Способ проявления хроматограмм и реагенты для проявления (при необходимости).

1.2.12. Способ оценки хроматограмм.

1.2.13. Вещества сравнения, используемые для оценки (при необходимости).

1.2.14. Аппаратура для количественной оценки разделенных компонентов (при необходимости).

2. СУЩНОСТЬ МЕТОДА

Метод заключается в разделении на хроматографической бумаге смеси веществ в потоке растворителя, основанном на различной скорости перемещения компонентов смеси.

3. АППАРАТУРА И МАТЕРИАЛЫ

3.1. Камера (сосуд) хроматографическая, закрытая герметичной крышкой.

3.2. Лампа ультрафиолетовая для обнаружения веществ с использованием флуоресценции при длине волны от 254 до 366 нм.

3.3. Микропипетка вместимостью 0,002-0,010 см или микрошприц вместимостью не более 0,01 см.

3.4. Пульверизатор для распыления проявителя.

3.5. Бумага хроматографическая.

3.6. Денситометр.

3.7. Устройство для сканирования пятен на бумаге.

4. ПОДГОТОВКА К ИСПЫТАНИЮ

4.1. Подготовка хроматографической бумаги

В зависимости от размеров хроматографической камеры из хроматографической бумаги вырезают полоски с ровной или зубчатой кромкой или кружки соответствующих размеров, на которых мягким карандашом обозначают пробу, систему растворителей, дату и линию старта с точками для нанесения пробы. Рекомендуемое расстояние между точками для нанесения пробы 20-30 мм, расстояние от линии старта до кромки бумаги - 30 мм.

При необходимости перед испытанием бумагу обрабатывают специальным раствором и высушивают при комнатной температуре в вертикальном положении стартом вниз.

4.2. В точки, отмеченные на линии старта, наносят с помощью калиброванной микропипетки или микрошприца 0,002-0,010 см испытуемого раствора, если в нормативно-технической документации на испытуемый реактив нет других указаний. При необходимости в точки на линии старта наносят таким же образом растворы веществ, соответствующих предполагаемым компонентам смеси, для идентификации и количественной оценки этих примесей. Допускается наносить пробу не в виде точки, а чертой с применением микропипетки или капилляра. После нанесения пробы на непропитанную бумагу растворителю дают свободно испариться. Если проба не содержит летучих компонентов, а бумага не пропитана органической неподвижной фазой, испарение растворителя можно ускорить струей горячего воздуха. Бумагу с нанесенной пробой помещают в хроматографическую камеру (пропитанные бумаги помещают в камеру сразу после нанесения раствора пробы).

При круговой хроматографии пробы наносят на окружность, описанную на расстоянии нескольких сантиметров от центра хроматограммы.

5. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

5.1. Хроматографирование

Хроматографическое разделение веществ проводят в хроматографической камере, в замкнутой системе, насыщенной парами подвижной фазы, при температуре, указанной в нормативно-технической документации на испытуемый реактив, поместив эту фазу в чашку на дно камеры. Если в нормативно-технической документации на испытуемый реактив нет других указаний, хроматографирование заканчивают, когда фронт подвижной фазы достигнет определенного расстояния от старта, например 250 мм. Хроматографирование проводят одним из указанных ниже способов.

5.1.1. Нисходящая хроматография

В камере для нисходящей хроматографии должен быть желобок или лодочка. Конец листа хроматографической бумаги с нанесенными пробами, ближний к линии старта, дважды перегибают, помещают в желобок или лодочку, закрепляют стеклянной палочкой, как показано на черт.5 приложения 1. Затем в желобок помещают подвижную фазу.

5.1.2. Восходящая хроматография

Хроматографическую бумагу подвешивают в хроматографической камере так, чтобы ее нижний конец был погружен в слой подвижной фазы на дне сосуда, как показано на черт.4 приложения 1, а уровень подвижной фазы находился на 10 мм ниже линии старта.

5.1.3. Горизонтальная хроматография

Испытания проводят, как показано на черт.2 приложения 1.

5.1.4. Круговая хроматография

При круговой хроматографии подвижную фазу помещают в середину хроматограммы, откуда она передвигается к периферийной части, как показано на черт.3 приложения 1. В качестве хроматографической камеры допускается использовать две чашки Петри или эксикатор.

5.1.5. Проточная хроматография

Если хроматографируемые вещества имеют в определенной системе низкие значения , нижнюю кромку нисходящей хроматограммы делают зубчатой. Когда подвижная фаза достигнет конца хроматограммы, разделение продолжают так, чтобы элюирующий растворитель стекал по каплям на дно камеры.

5.1.6. Повторная хроматография

Метод, при котором по завершении первого продвижения подвижной фазы хроматограмму высушивают и хроматографирование повторяют (возможно несколько раз).

5.1.7. Многомерная хроматография

Метод, при котором по завершении первого продвижения подвижной фазы хроматограмму поворачивают (например, под углом 90°) и снова проводят хроматографирование. Перед повторным хроматографированием испаряют подвижную фазу.

5.2. Сушка хроматограмм

По окончании разделения хроматограмму вынимают из камеры и отмечают фронт мягким карандашом, после чего сушат при комнатной температуре в вертикальном положении, стартом вниз. Продолжительность сушки зависит от скорости испарения подвижной фазы и химической стабильности хроматографируемых веществ.

5.3. Проявление хроматограмм

Проявление компонентов на хроматограмме проводят одним из способов, приведенных ниже.

5.3.1. Физические методы

Визуально, при дневном свете, отмечают на хроматограмме положение пятен - цветных веществ. При наличии флуоресцирующих веществ проявление проводят в УФ-свете.

5.3.2. Химические методы

Хроматограммы проявляют жидкими и газообразными проявителями, используя реакцию имеющихся на хроматограмме соединений с подходящим реагентом-проявителем с образованием окрашенного или флуоресцирующего вещества. Жидкие проявители наносят пульверизатором или используют реагенты в аэрозольной упаковке, газообразные применяют, поместив хроматограмму в пары проявителя.

5.3.2.1. Хроматограмму кладут горизонтально на лист фильтровальной бумаги или оставляют подвешенной на стеклянной палочке и опрыскивают как можно более мелкими каплями (туманом) проявителя всю площадь хроматограммы вначале с одной, а потом с другой стороны.

5.3.2.2. При проявлении газообразным проявителем хроматограмму подвешивают в камере, в которую помещен летучий реагент (например, кристаллы йода), или на дне которой проявитель получают химическим путем (например, оксиды азота получают путем добавления твердого нитрита натрия к раствору соляной кислоты).

5.3.3. Биологические методы

Хроматограммы проявляют, используя биологическую активность хроматографируемых веществ.

6. ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

6.1. Качественная оценка хроматограммы заключается в определении положения пятна или полосы, которое характеризуется значением .

где - расстояние от центра пятна пробы до стартовой линии, мм;

- расстояние от фронта растворителя до стартовой линии, мм,

или значением :

где - расстояние от центра пятна вещества сравнения до стартовой линии, мм.

6.2. Определение количества искомого компонента в пробе проводят путем сравнения размеров и интенсивности окраски его пятна с пятнами вещества сравнения, нанесенными на бумагу в интервале значений концентрации, указанных в нормативно-технической документации на испытуемый реактив, и обработанными в условиях испытания. Оценку проводят визуально или с помощью аппаратуры (например, денситометра, устройства для сканирования пятен компонентов на бумаге), или путем элюирования пятен и последующего фотометрического определения оптической плотности растворов.

6.3. Хроматограммы хранят в условиях, препятствующих появлению взаимных оттисков хроматограмм (например, с прокладками из фильтровальной бумаги). Если характер пятен позволяет, то на хроматограммы наносят слой быстросохнущего лака. В случае необходимости проводят зарисовку контура хроматограммы или фотографирование.

ПРИЛОЖЕНИЕ 1 (справочное). ПРИМЕРЫ ОБОРУДОВАНИЯ ДЛЯ БУМАЖНОЙ ХРОМАТОГРАФИИ И СПОСОБОВ ЕГО ИСПОЛЬЗОВАНИЯ

ПРИЛОЖЕНИЕ 1
Справочное

Черт.1. Камера для восходящей и нисходящей хроматографии

Камера для восходящей и нисходящей хроматографии

Черт.2. Камера для горизонтальной хроматографии

Камера для горизонтальной хроматографии

1 - камера; 2 - решетка из стеклянных палочек; 3 - стеклянная палочка для прижатия конца хроматограммы; 4 - крышка; 5 - хроматограмма; 6 - растворитель

Черт.3. Камера для круговой хроматограммы (две чашки Петри)

Камера для круговой хроматограммы (две чашки Петри)

1 - бумажный фитиль; 2, 4 - чашки Петри; 3 - круговая хроматограмма; 5 - растворитель

Черт.4. Способы расположения хроматограммы при восходящей хроматографии

Способы расположения хроматограммы при восходящей хроматографии

1 - хроматограмма; 2 - хроматографическая камера; 3 - растворитель

Черт.5. Способ вкладывания бумажной хроматограммы в желобок

Способ вкладывания бумажной хроматограммы в желобок

1 - хроматограмма; 2 - старт; 3 - стеклянная палочка; 4 - загнутая палочка для прижатия хроматограммы в желобке; 5 - желобок

ПРИЛОЖЕНИЕ 2 (справочное). ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ


ПРИЛОЖЕНИЕ 2
Справочное

Термин

Пояснение

Бумажная хроматография

Физико-химический метод разделения на хроматографической бумаге смеси веществ между неподвижной фазой на носителе и подвижной фазой

Носитель

Хроматографическая бумага

Неподвижная (стационарная) фаза

Фаза, закрепленная на носителе

Подвижная (мобильная) фаза

Фаза, обеспечивающая перемещение разделяемых веществ по носителю с неподвижной фазой

Место, на которое наносится испытуемая проба

Хроматографирование

Прохождение подвижной фазы через носитель с неподвижной фазой и нанесенной пробой

Нисходящая хроматография

Метод, при котором подвижная фаза движется вниз

Восходящая хроматография

Метод, при котором подвижная фаза движется вверх

Горизонтальная хроматография

Метод, при котором подвижная фаза движется горизонтально

Круговая хроматография

Метод, при котором подвижная фаза движется из середины круга к его окружности

Проточная хроматография

Метод, при котором продвижение подвижной фазы продолжается и после достижения фронтом конца бумаги

Повторная хроматография

Метод, при котором по завершении первого продвижения подвижной фазы хроматограмму высушивают и хроматографирование повторяют (иногда несколько раз)

Проявление

Способ обнаружения веществ на хроматограмме

Величина, определяемая отношением расстояния от центра (концентрационного максимума) пятна или полосы до старта к расстоянию от фронта до старта

Величина, определяемая отношением расстояния от центра пятна или полосы испытуемого вещества до старта к расстоянию от центра пятна или полосы вещества сравнения до старта

Константа распределения ()

Отношение концентрации вещества в неподвижной фазе к концентрации вещества в подвижной фазе:

где - концентрация вещества в неподвижной фазе;

Концентрация вещества в подвижной фазе

1. Доказательство присутствия ожидаемого вещества или его примеси, оценка хроматографической однородности, проводимая в сопоставлении с известным веществом сравнения.

2. Идентификация вещества, подтверждение идентичности испытуемого вещества с известным веществом.

При данных условиях для каждого соединения характерно определенное местонахождение на хроматограмме () и определенное поведение при проявлении (окраска, флуоресценция). Идентификацию проводят непосредственным сравнением пятен известного и испытуемого вещества на одной хроматограмме или элюированием вещества из хроматограммы и последующей идентификацией, например измерением соответствующего спектра.

3. Определение одного или более веществ в смеси, проводимое одним из следующих методов:

а) субъективной оценкой хроматограммы (например, с помощью калибровочной хроматограммы);

б) объективной оценкой хроматограммы;

в) последующим определением некоторых компонентов физико-химическим методом (например, по элюировании вещества с хроматограммы его определяют спектрофотометрически).

4. Установление структуры органических соединений. Сочетанием реакций разложения с хроматографической идентификацией продуктов этих реакций можно установить структуру молекулы.



Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
официальное издание
Реактивы. Методы приготовления
реактивов и растворов: Сб. ГОСТов. -
М.: ИПК Издательство стандартов, 2008

Метод хроматографии на бумаге относится к плоскостной хроматографии, он основан на распределении анализируемых веществ между двумя несмешивающимися жидкостями.

В распределительной хроматографии разделение веществ происходит вследствие различия коэффициентов распределения компонентов между двумя несмешивающимися жидкостями. Вещество присутствует в обеих фазах в виде раствора. Неподвижная фаза удерживается в порах хроматографической бумаги, не взаимодействуя с ней, бумага выполняет функцию носителя неподвижной фазы.

Виды хроматографической бумаги:

1) гидрофильная бумага удерживает в порах до 22 % воды; неподвижная фаза – вода, подвижная – органический растворитель; такая бумага применяется для определения водорастворимых веществ.

2) гидрофобная бумага отталкивает воду, поэтому ее пропитывают неполярным органическим растворителем (неподвижная фаза); подвижная фаза – вода; такая бумага применяется для определения нерастворимых в воде соединений (жирорастворимые кислоты, витамины).

К хроматографической бумаге предъявляются следующие требования:

¨ химическая чистота;

¨ химическая и адсорбционная нейтральность по отношению к анализируемым веществам и подвижной фазе;

¨ однородность по плотности;

¨ одинаковая направленность волокон.

Для получения хроматограммы на бумагу наносят каплю анализируемой смеси. Бумагу помещают в хроматографическую камеру, ее конец погружают в сосуд с элюентом. Растворитель продвигается по бумаге, смесь анализируемых веществ распределяется между подвижной и неподвижной фазами и разделяется на бумаге в виде пятен или полос. Положение зон компонентов определяют проявлением хроматографической бумаги соответствующими реагентами, которые с компонентами разделяемой смеси образуют окрашенные соединения.

Для количественной оценки способности разделения веществ в хроматографической системе применяют коэффициент распределения К р – отношение концентрации вещества в неподвижной и подвижной фазах. Экспериментальное установление коэффициентов распределения в данном методе невозможно, для оценки способности разделения веществ на бумаге применяют коэффициент смещения (подвижности) R f . Коэффициент смещения равен отношению скорости движения вещества () к скорости движения подвижной фазы (). Экспериментально величину R f находят как отношение расстояния Х, пройденного веществом, к расстоянию Х f , пройденному растворителем от старта до линии фронта:

.

Коэффициент R f изменяется в пределах 0 – 1,00. Величина R f зависит от природы определяемого вещества, вида хроматографической бумаги, качества и природы растворителя, способа нанесения пробы, техники эксперимента и температуры. Коэффициент R f не зависит от концентрации определяемого вещества и присутствия других компонентов.


Идентификацию по хроматограмме выполняют следующими способами:

¨ визуальным сравнением характерной окраски зон веществ на исследуемой и стандартной хроматограммах;

¨ измерением коэффициентов подвижности R f для стандартного и анализируемого вещества в определенном растворителе. Хроматографирование и установление R f для исследуемой и стандартной смесей проводят на одинаковой бумаге и в одной камере в строго идентичных условиях. Сопоставляя коэффициенты R f , делают заключение о присутствии в анализируемой смеси тех или иных компонентов.

Количественное определение выполняют непосредственно по хроматограмме или при вымывании (элюировании) анализируемого вещества с бумаги.

Способы количественного анализа:

¨ визуальное сравнение интенсивности окраски пятен на исследуемой и стандартной хроматограммах (полуколичественное определение, точность 15 –20 %);

¨ измерение площади пятна, образованного данным компонентом, и нахождение концентрации вещества по градуировочному графику, построенному для серии стандартных растворов в координатах: площадь пятна – концентрация вещества; точность определения 5 – 10 %;

¨ элюирование определяемого вещества с поверхности хроматограммы и спектрофотометрическое или флуориметрическое измерение оптической плотности элюата (А); концентрацию вещества в растворе рассчитывают по формуле:

где К – коэффициент пропорциональности; S – площадь пятна, измеренная предварительно, мм 2 ; точность определения 1 %.

По способу хроматографирования различают восходящую (рис. 21), нисходящую (рис. 22), круговую (рис. 23), градиентную и двухмерную хроматографии.

Метод хроматографии на бумаге широко применяется для определения неорганических соединений, аминокислот, аминов, белков, углеводов, жирных кислот, фенолов, витаминов в химической, пищевой, фармацевтической промышленности, медицине, биохимии.

Метод нашел применение в анализе практически всех пищевых продуктов: в сахарном производстве – для определения углеводов; в хлебопекарном и кондитерском – аминокислот, органических кислот, углеводов, полисахаридов и карбонильных соединений; в виноделии – органических кислот и аминокислот; в производстве молока и молочных продуктов – аминокислот; в мясоперерабатывающей промышленности – фенолов, жирных и летучих кислот, аминокислот и карбонильных соединений.

РАСПРЕДЕЛИТЕЛЬНАЯ ХРОМАТОГРАФИЯ. БУМАЖНАЯ ХРОМАТОГРАФИЯ (ХРОМАТОГРАФИЯ НА БУМАГЕ)

Распределительная хроматография основана на использовании различий в растворимости распределяемого вещества в двух контактирующих несмешивающихся жидких фазах. Обе фазы - ПФ и НФ - представляют собой жидкие фазы. При перемещении жидкой ПФ вдоль жидкой же НФ хроматографируемые вещества непрерывно перераспределяются между обеими жидкими фазами.

К распределительной хроматографии относится бумажная хроматография (или хроматография на бумаге) в ее обычных вариантах. В этом методе вместо пластинок с тонким слоем сорбента, употребляемых при ТСХ, применяют специальную хроматографическую бумагу, по которой, пропитывая ее, перемещается жидкая ПФ во время хроматографирования от линии старта до линии финиша растворителя.

Различают нормальнофазовую и обращеннофазовую бумажную хроматографию.

В варианте нормальнофазовой бумажной хроматографии жидкой НФ является вода, сорбированная в виде тонкого слоя на волокнах и находящаяся в порах гидрофильной бумаги (до 25% по массе). Эта связанная вода по своей структуре и физическому состоянию сильно отличается от обычной жидкой воды. В ней и растворяются компоненты разделяемых смесей.

Роль ПФ, перемещающейся по бумаге, играет другая жидкая фаза, например, органическая жидкость с добавлением кислот и воды. Жидкую органическую ПФ перед хроматографированием насыщают водой для того, чтобы ПФ не растворяла в себе воду, сорбированную на волокнах гидрофильной хроматографической бумаги.

Хроматографическая бумага выпускается промышленностью. Она должна отвечать ряду требований: готовиться из высококачественных волокнистых сортов хлопка, быть однородной по плотности и толщине, по направлению ориентирования волокон, химически чистой и инертной по отношению к НФ и разделяемым компонентам.

В нормальнофазовом варианте в качестве ПФ чаще всего применяют жидкие смеси, составленные из различных растворителей. Классическим примером такой ПФ является смесь уксусной кислоты, н-бутанола и воды в объемном отношении 1:4:5. Используют и такие растворители, как этилацетат, хлороформ, бензол и т. д.

В варианте обращеннофазовой бумажной хроматографии жидкая НФ представляет собой органический растворитель, тогда как в роли жидкой ПФ выступает вода, водные или спиртовые растворы, смеси кислот со спиртами. Процесс проводят с использованием гидрофобной хроматографической бумаги. Её получают обработкой (пропиткой) бумаги нафталином, силиконовыми маслами, парафином и т. д. Неполярные и малополярные органические растворители сорбируются на волокнах гидрофобной бумаги и проникают в ее поры, образуя тонкий слой жидкой НФ. Вода не удерживается на такой бумаге не смачивает ее.

Техника бумажной хроматографии в общих чертах такая же, как и в методе ТСХ. Обычно на полоску хроматографической бумаги на линию старта наносят кашпо анализируемого раствора, содержащего смесь разделяемых веществ. После испарения растворителя бумагу ниже линии старта погружают в ПФ, располагая бумагу вертикально (подвешивая ее). Закрывают камеру крышкой и проводят хроматографирование до тех пор, пока ПФ не достигнет обозначенной на бумаге линии фронта растворителя. После этого процесс прерывают, бумагу сушат на воздухе и проводят детектирование пятен и идентификацию компонентов смеси.

Бумажная хроматография подобно методу ТСХ применяется как в качественном, так и в количественном анализе.

Для количественного определения содержания того или иного компонента смеси применяют различные методы:

  • 1) исходят из наличия определенной зависимости (пропорциональной, линейной) между количеством вещества в пятне и площадью пятна (часто при этом предварительно строят градуировочный график);
  • 2) взвешивают вырезанное пятно с веществом и такую же по площади чистую бумагу, а затем по разности находят массу определяемого вещества;
  • 3) учитывают связь между интенсивностью окраски пятна и содержания в нем определяемого компонента, придающего окраску пятну.

В ряде случаев вещества, содержащиеся в пятнах, экстрагируют каким-либо растворителем и затем анализируют экстракт.

Бумажная хроматография - фармакопейный метод, используется для разделения смесей, содержащих как неорганические, так и органические вещества. Метод доступен, прост по выполнению, однако в целом он уступает более современному методу ТСХ, в котором применяется тонкий слой сорбента.